WINDOWS UPDATE PROCESSING

Sarah Santos

August 10,2022

WHY DO WE NEED WINDOWS
UPDATES?

WHY DO WE NEED WINDOWS
UPDATES?

Windows Updates (MSUS) MSU is an update package

MEMORY FORENSICS . . :
- End goal: memory forensics, which requires *
(e.g., Volatility)

WHY DO WE NEED WINDOWS
UPDATES?

Windows Updates (MSUS) MSU is an update package

Windows profile Right profile for Windows platform, which we build from *

MEMORY FORENSICS
(e.g., Volatility)

End goal: memory forensics, which requires *

WHY DO WE NEED WINDOWS
UPDATES?

Windows Updates (MSUS) MSU is an update package

kernel symbols + data structs Symbols and data structures, which are contained in A

Windows profile Right profile for Windows platform, which we build from #

MEMORY FORENSICS
(e.g.,Volatility)

End goal: memory forensics, which requires *

WHY DO WE NEED WINDOWS
UPDATES?

Windows Updates (MSUS) MSU is an update package

PDB = program o)
kernel PDB files database Kernel PDB files, which involve info from A

kernel symbols + data structs Symbols and data structures, which are contained in A

Windows profile Right profile for Windows platform, which we build from *

MEMORY FORENSICS
(e.g.,Volatility)

End goal: memory forensics, which requires *

WHY DO WE NEED WINDOWS
UPDATES?

Windows Updates (MSUS) MSU is an update package

kernel PE files (executables) epfe:upt:;tlzble Kernel PE files (executables), which we derive from #

PDB = program o)
kernel PDB files database Kernel PDB files, which involve info from A

kernel symbols + data structs Symbols and data structures, which are contained in A

Windows profile Right profile for Windows platform, which we build from *

MEMORY FORENSICS
(e.g.,Volatility)

End goal: memory forensics, which requires *

WHY DO WE NEED WINDOWS

UPDATES?

Windows Updates (MSUs)

CAB files

kernel PE files (executables)

kernel PDB files

kernel symbols + data structs

Windows profile

MEMORY FORENSICS
(e.g.,Volatility)

MSU is an update package

CAB = Cabinet CAB files, which are the meat of a A

PE = portable

Kernel PE files (executables), which we derive from #
executable

PDB = program S)
database Kernel PDB files, which involve info from A

Symbols and data structures, which are contained in A

Right profile for Windows platform, which we build from #

End goal: memory forensics, which requires *

WHY DO WE NEED WINDOWS

UPDATES?

Windows Updates (MSUs)

CAB files

kernel PE files (executables)

kernel PDB files

kernel symbols + data structs

Windows profile

MEMORY FORENSICS
(e.g.,Volatility)

MSU is an update package .
peate packes Windows Update!

CAB = Cabinet CAB files, which are the meat of a A

PE = portable

Kernel PE files (executables), which we derive from #
executable

PDB = program S)
database Kernel PDB files, which involve info from A

Symbols and data structures, which are contained in A

Right profile for Windows platform, which we build from #

End goal: memory forensics, which requires *

This is “extraction

stack”. WHY DO WE NEED WINDOWS

There’s also a
“collection stack”
to get MSUs.

UPDATES?

Windows Updates (MSUs)

CAB files

kernel PE files (executables)

kernel PDB files

kernel symbols + data structs

Windows profile

MEMORY FORENSICS
(e.g.,Volatility)

MSU is an update package .
poate pacEs Windows Update!

CAB = Cabinet CAB files, which are the meat of a A

PE = portable

Kernel PE files (executables), which we derive from #
executable

PDB = program S)
database Kernel PDB files, which involve info from A

Symbols and data structures, which are contained in A

Right profile for Windows platform, which we build from #

End goal: memory forensics, which requires *

WHY DO WE NEED WINDOWS
UPDATES?

Windows Updates (MSUs)

CAB files

kernel PE files (executables)

PDB = program o)
kernel PDB files database Kernel PDB files, which involve info from A

kernel symbols + data structs Symbols and data structures, which are contained in A

Windows profile Right profile for Windows platform, which we build from *

MEMORY FORENSICS
(e.g.,Volatility)

End goal: memory forensics, which requires *

TLDR: They have the new kernel executables we
need to update/make Windows profiles.

WHY DO WE NEED
WINDOWS

UPDATES!?

WHY DO WE NEED
WINDOWS

UPDATES!?

TLDR: They have the new kernel executables we
need to update/make Windows profiles.

The big question then is how to extract new kernel
executables from CAB files (the meat of a Windows
update).

HOW DO WE CURRENTLY EXTRACT
KERNEL EXECUTABLES FROM CABS?

(The Current Process)

HOW DO WE CURRENTLY EXTRACT
KERNEL EXECUTABLES FROM CABS?

.. Vv
s - e
= ot

ntoskrnl.exe

CAB

Unfortunately, we can’t just directly extract a full kernel exe from a CAB file

CAB

HOW DO WE CURRENTLY EXTRACT
KERNEL EXECUTABLES FROM CABS?

Unfortunately, we can’t just directly extract a full kernel exe from a CAB file

We could apply the CAB to a Windows machine to produce the new kernel

executable

ntoskrnl.exe

HOW DO WE CURRENTLY EXTRACT
KERNEL EXECUTABLES FROM CABS?

+ master_experiment > mount >

A Name Date modified Type

Perflogs
Progr:n Files 'q" ' g
Program Files (x86) 3 /0
Us:r’s ;f ’
Windows
ntoskrnl.exe
WIM

CAB

Unfortunately, we can’t just directly extract a full kernel exe from a CAB file

We could apply the CAB to a Windows machine to produce the new kernel
executable

Instead of an entire Windows machine, we use a WIM (Windows image)

a WIM = “baby Windows file system” (to quote Jason)

HOW DO WE CURRENTLY EXTRACT
KERNEL EXECUTABLES FROM CABS?

+ master_experiment > mount >

A Name Date modified Type

$ Perflogs
0\6 Program Files ' .l ' g
Program Files (x86) 3 Q /0
Us:r’s ;f ’
Windows
ntoskrnl.exe
WIM

CAB

Unfortunately, we can’t just directly extract a full kernel exe from a CAB file

We could apply the CAB to a Windows machine to produce the new kernel
executable

Instead of an entire Windows machine, we use a WIM (Windows image)

0 WIM = “baby Windows file system” (to quote Jason)

HOW DO WE CURRENTLY EXTRACT
KERNEL EXECUTABLES FROM CABS?

+ master_experiment > mount >
h e A Ry Type Windows\System32\ntoskrnl.exe .
Perflogs 6/5/2021 7:10 AM File folder
0\6 Program Files 6/5/2021 9:30 AM File folder r‘ > ' p
Program Files (x86) 6/5/2021 9:36 AM File folder v & 'a’
6/5/2021 7:26 AM File folder zf
ntoskrnl.exe
WIM
CAB
m experim m Windows > System32 o
Unfortunately, we can’t just directly extract a full kernel exe from a CAB file j - e
We could apply the CAB to aWindows machine to produce the new kernel) s
|4 ntmarta.dll
executable g
ntprint.exe
Instead of an entire Windows machine, we use a WIM (Windows image) i

0 WIM = “baby Windows file system” (to quote Jason)

APPLYING CABS
WITH DISM

(to fake the full update process with a WIM)

DISM Overview

Article « 12/15/2021 » 3 minutes to read = 6 contributors &y o

Deployment Image Servicing and Management (DISM.exe) is a command-line tool
that can be used to service and prepare Windows images, including those used
for Windows PE, Windows Recovery Environment (Windows RE) and Windows
Setup. DISM can be used to service a Windows image (wim) or a virtual hard disk
(.vhd or .vhdx).

DISM comes built into Windows and is available through the command line or
from Windows PowerShell. To learn more about using DISM with PowerShell, see
Deployment Imaging Servicing Management (DISM) Cmdlets in Windows
PowerShell.

DISM Overview

Article « 12/15/2021 » 3 minutes to read » 6 contributors) LA

Deployment Image Servicing and Management (DISM.exe) is a command-line tool
that can be used to service and prepare Windows images, including those used
for Windows PE, Windows Recovery Environment (Windows RE) and Windows
Setup. DISM can be used to service a Windows image (.wim) or a virtual hard disk
(.vhd or .vhdx).

DISM comes built into Windows and is available through the command line or
from Windows PowerShell. To learn more about using DISM with PowerShell, see

De p|Oym Et ¥ Administrator: Windows PowerShell - (] X
POVVEYSTWECOpyright (C) Microsoft Corporation. All rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows

PS C:\Users\Administrator> Dism /Mount-Image /ImageFile:D:\master_experiment\wims\winll-x64\install.wim
/Index:1 /MountDir:D:\master_experiment\mount

Deployment Image Servicing and Management tool
Version: 10.0.20348.681

Mounting image

The operation completed successfully.

PS C:\Users\Administrator> Dism /Image:D:\master_experiment\mount /Add-Package /PackagePath:D:\master_ex
periment\cabs\1909\2019-11-12 windows10.0-kb4524570-x64_d9048d8efd3fda600e89c44808c8fcb5cfa2783c.cab

Deployment Image Servicing and Management tool
Version: 10.0.20348.681

Image Version: 10.0.22000.194

Processing 1 of 1 - Adding package Package_for_RollupFix~31bf3856ad364e35~amd64~~18362.476.1.8

Error: 0x800f081e

The specified package is not applicable to this image.

The DISM log file can be found at C:\Windows\Logs\DISM\dism.log
PS C:\Users\Administrator>

CAN WE IMPROVE OUR DISM
PROCESS?

(My goal for the summer)

CAN WE IMPROVE OUR DISM PROCESS?

Can we make it leaner, more efficient?

Run experiments to find out

CAN WE IMPROVE OUR DISM PROCESS?

Can we make it leaner, more efficient?
Run experiments to find out

Humble beginnings
Learning DISM
Automating DISM in Python

Step 4: Learn about Windows updates
Use the Settings to manually update your EC2 instance using Windows Update.

Determine which specific version of Windows you are running, then find the Windows Knowledge Base (KB) number that
matches.

https://support.microsoft.com/en-us/topic/windows-10-update-history-857b8cch-71e4-49e5-b3f6-7073197d98fb

For example, the latest Windows 10 21H2 update is version 10.0.19044.1706 and is KB5013942.

Download the Update associated with the KB for your platform from
https://www.catalog.update.microsoft.com/Home.aspx

Step 5: Locate the Windows Kernel

Find the ntoskrnl binary in c:\windows\system32 on your EC2 instance. What version is the kernel? How do you know?

Step 6: Use DISM to mount and unmount a WIM

Windows can be deployed using image management. We will use this capability to apply patches to mounted images
and extract the kernel.

Here is a set of WIMs that we have extracted from various Windows installers:
https://software.research.volexity.com/windows/wims,
Copy one to your EC2 instance and use DISM to mount it

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/what-is-dism ?view=windows-10

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/dism-image-management-command-line-
options-s14?view=windows-10

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/mount-and-modify-a-windows-image-
using-dism?view=windows-11

Step 7: Locate and install a package in a mounted WIM

Find a KB that matches the WIM you mounted and apply it using DISM.

Step 8: Write a Python package that wraps DISM and performs the same
operations

CAN WE IMPROVE OUR DISM PROCESS?

June 23, 2022

Sarah Santos 6/20 7:11 PM L
Experiment 0.0

Open to suggestions from more experienced eyeballs. Please rip
apart with questions/concerns. Sorry this is so long. | can also jump
on a call this week to go through it.

I ran a test experiment on 2 CABs x 25 images (image = index in a
WIM). The 25 images came from 4 WIM files (win10-1903-x64 and
win10-1909-x64, the boot.wim and install.wim in each). One of the
CABs was from Nick's link in OneNote (but the x64 version), the other
was randomly selected.

Can we make it leaner, more efficient?
Run experiments to find out

Humble beginnings
Learning DISM
Automating DISM in Python

Eventually, kicked off Experiment 0.0

All while experiencing DISM’s weak spots

Step 4: Learn about Windows updates
Use the Settings to manually update your EC2 instance using Windows Update.

Determine which specific version of Windows you are running, then find the Windows Knowledge Base (KB) number that
matches.

https://support.microsoft.com/en-us/topic/windows-10-update-history-857b8cch-71e4-49e5-b3f6-7073197d98fb

For example, the latest Windows 10 21H2 update is version 10.0.19044.1706 and is KB5013942.

Download the Update associated with the KB for your platform from
https://www.catalog.update.microsoft.com/Home.aspx

Step 5: Locate the Windows Kernel

Find the ntoskrnl binary in c:\windows\system32 on your EC2 instance. What version is the kernel? How do you know?

Step 6: Use DISM to mount and unmount a WIM

Windows can be deployed using image management. We will use this capability to apply patches to mounted images
and extract the kernel.

Here is a set of WIMs that we have extracted from various Windows installers:
https://software.research.volexity.com/windows/wims,
Copy one to your EC2 instance and use DISM to mount it

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/what-is-dism ?view=windows-10

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/dism-image-management-command-line-
options-s14?view=windows-10

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/mount-and-modify-a-windows-image-
using-dism?view=windows-11

Step 7: Locate and install a package in a mounted WIM

Find a KB that matches the WIM you mounted and apply it using DISM.

Step 8: Write a Python package that wraps DISM and performs the same
operations

CAN WE IMPROVE OUR DISM PROCESS?

PROBLEM: a CAB doesn’t always
successfully apply to a WIM

PS C:\Users\Administrator> Dism /Image:D:\master_experiment\mount /Add-Package /PackagePath:D:\master_ex
periment\cabs\1909\2019-11-12_windows10.0-kb4524570-x64_d9048d8efd3fda600e89c44808c8fcb5cfa2783c.cab

Deployment Image Servicing and Management tool
Version: 10.0.20348.681

Image Version: 10.0.22000.194

Processing 1 of 1 - Adding package Package_for_ RollupFix~31bf3856ad364e35~amd64~~18362.476.1.8

‘Er‘r‘or‘ : 0x800f081e

Me=spacified package is not applicable to this imasg

The DISM log file can be found at C:\Windows\Logs\DISM\dism.log
PS C:\Users\Administrator>

CAN WE IMPROVE OUR DISM PROCESS?

PROBLEM: a CAB doesn’t always
successfully apply to a WIM - we don’t
know why/when

PS C:\Users\Administrator> Dism /Image:D:\master_experiment\mount /Add-Package /PackagePath:D:\master_ex
periment\cabs\1909\2019-11-12_windows10.0-kb4524570-x64_d9048d8efd3fda600e89c44808c8fcb5cfa2783c.cab

Deployment Image Servicing and Management tool
Version: 10.0.20348.681

Image Version: 10.0.22000.194

‘Er‘r‘or‘ : 0x800f081e

Me=spacified package is not applicable to this imasg

The DISM log file can be found at C:\Windows\Logs\DISM\dism.log
PS C:\Users\Administrator>

CAN WE IMPROVE OUR DISM PROCESS?

PROBLEM: a CAB doesn’t always
successfully apply to a WIM - we don’t
know why/when

Missing the logic for how to determine a
successful CAB

PS C:\Users\Administrator> Dism /Image:D:\master_experiment\mount /Add-Package /PackagePath:D:\master_ex
periment\cabs\1909\2019-11-12_windows10.0-kb4524570-x64_d9048d8efd3fda600e89c44808c8fcb5cfa2783c.cab

Deployment Image Servicing and Management tool
Version: 10.0.20348.681

Image Version: 10.0.22000.194

‘Er‘r‘or‘ : 0x800f081e

Me=spacified package is not applicable to this imasg

The DISM log file can be found at C:\Windows\Logs\DISM\dism.log
PS C:\Users\Administrator>

CAN WE IMPROVE OUR DISM PROCESS?

PROBLEM: a CAB doesn’t always
successfully apply to a WIM - we don’t
know why/when

Missing the logic for how to determine a
successful CAB

We use number of heuristics to
approximate in current process

PS C:\Users\Administrator> Dism /Image:D:\master_experiment\mount /Add-Package /PackagePath:D:\master_ex
periment\cabs\1909\2019-11-12_windows10.0-kb4524570-x64_d9048d8efd3fda600e89c44808c8fcb5cfa2783c.cab

Deployment Image Servicing and Management tool
Version: 10.0.20348.681

Image Version: 10.0.22000.194

Processing 1 of 1 - Adding package Package_for_ RollupFix~31bf3856ad364e35~amd64~~18362.476.1.8

The DISM log file can be found at C:\Windows\Logs\DISM\dism.log
PS C:\Users\Administrator>

CAN WE IMPROVE OUR DISM PROCESS?

PROBLEM: a CAB doesn’t always PROBLEM: DISM is dismally slow
successfully apply to a WIM - we don’t
know why/when

Missing the logic for how to determine a
successful CAB

We use number of heuristics to
approximate in current process

PS C:\Users\Administrator> Dism /Image:D:\master_experiment\mount /Add-Package /PackagePath:D:\master_ex
periment\cabs\1909\2019-11-12 windows10.0-kb4524570-x64_d9048d8efd3fda600e89c44808c8fcb5cfa2783c.cab

Deployment Image Servicing and Management tool
Version: 10.0.20348.681

Image Version: 10.0.22000.194

Processing 1 of 1 - Adding package Package_for_ RollupFix~31bf3856ad364e35~amd64~~18362.476.1.8

The DISM log file can be found at C:\Windows\Logs\DISM\dism.log
PS C:\Users\Administrator>

CAN WE IMPROVE OUR DISM PROCESS?

PROBLEM: a CAB doesn’t always PROBLEM: DISM is dismally slow
successfully apply to a WIM - we don’t

Requires mounting and unmounting a WIM
know why/when

Missing the logic for how to determine a
successful CAB

We use number of heuristics to
approximate in current process

PS C:\Users\Administrator> Dism /Image:D:\master_experiment\mount /Add-Package /PackagePath:D:\master_ex
periment\cabs\1909\2019-11-12 windows10.0-kb4524570-x64_d9048d8efd3fda600e89c44808c8fcb5cfa2783c.cab

Deployment Image Servicing and Management tool
Version: 10.0.20348.681

Image Version: 10.0.22000.194

Processing 1 of 1 - Adding package Package_for_ RollupFix~31bf3856ad364e35~amd64~~18362.476.1.8

The DISM log file can be found at C:\Windows\Logs\DISM\dism.log
PS C:\Users\Administrator>

CAN WE IMPROVE OUR DISM PROCESS?

PROBLEM: a CAB doesn’t always PROBLEM: DISM is dismally slow
successfully apply to a WIM - we don’t

Requires mounting and unmounting a WIM
know why/when

/Add-Package can take a while

Missing the logic for how to determine a
successful CAB Applies the entire CAB file, which has a

bunch of other things besides the kernel
We use number of heuristics to update

approximate in current process

PS C:\Users\Administrator> Dism /Image:D:\master_experiment\mount /Add-Package /PackagePath:D:\master_ex
periment\cabs\1909\2019-11-12 windows10.0-kb4524570-x64_d9048d8efd3fda600e89c44808c8fcb5cfa2783c.cab

Deployment Image Servicing and Management tool
Version: 10.0.20348.681

Image Version: 10.0.22000.194

Processing 1 of 1 - Adding package Package_for_ RollupFix~31bf3856ad364e35~amd64~~18362.476.1.8

The DISM log file can be found at C:\Windows\Logs\DISM\dism.log
PS C:\Users\Administrator>

PS C:\UsersiAdministrator) Dism /Get-Imagelnfo }ImageFile:D:\méster_experiment\wims\winl@»1909—x64\in5ta
11.wim

Deployment Image Servicing and Management tool
[Version: 10.0.20348.681

Details for image : D:\master_experiment\wims\win10-1909-x64\install.wim
: Windows 10 Education

Description : Windows 10 Education
Size : 14,780,927,379 bytes

: Windows 10 Education N
Description : Windows 10 Education N
Size : 13,958,508,090 bytes

: Windows 10 Enterprise

Description : Windows 10 Enterprise
Size : 14,781,260,269 bytes

: Windows 10 Enterprise N
Description : Windows 10 Enterprise N
Size : 13,958,401,617 bytes

: Windows 10 Pro
Description : Windows
Size : 14,782,419,696

: Windows 10 Pro
Description : Windows
Size : 13,975,944,782

Index : 7

Different editions of same Windows version, but same
kernel

PS C:\UsersiAdministrator) Dism /Get-Imagelnfo }ImageFile:D:\méster_experiment\wims\winl@»1909—x64\in5ta
11.wim

Deployment Image Servicing and Management tool
Version: 10.0.20348.681

Details for image : D:\master_experiment\wims\win10-1909-x64\install.wim
: Windows 10 Education

Description : Windows 10 Education
Size : 14,780,927,379 bytes

: Windows 10 Education N
Description : Windows 10 Education N
Size : 13,958,508,090 bytes

: Windows 10 Enterprise

Description : Windows 10 Enterprise
Size : 14,781,260,269 bytes

: Windows 10 Enterprise N
Description : Windows 10 Enterprise N
Size : 13,958,401,617 bytes

: Windows 10 Pro
Description : Windows
Size : 14,782,419,696

: Windows 10 Pro
Description : Windows
Size : 13,975,944,782

Index : 7

Different editions of same Windows version, but same
kernel

Optimize framework by only taking smallest sized
image

PS C:\UsersiAdministrator) Dism /Get-Imagelnfo }ImageFile:D:\méster_experiment\wims\winl@»1909—x64\in5ta
11.wim

Deployment Image Servicing and Management tool
Version: 10.0.20348.681

Details for image : D:\master_experiment\wims\win10-1909-x64\install.wim
: Windows 10 Education

: Windows 1@ Education
: 14,780,927,379 bytes

: Windows 10 Education N
Description : Windows 10 Education N
Size : 13,958,508,090 bytes

: Windows 10 Enterprise

Description : Windows 10 Enterprise
Size : 14,781,260,269 bytes

: Windows 10 Enterprise N
Description : Windows 10 Enterprise N
Size : 13,958,401,617 bytes

: Windows 10 Pro
Description : Windows
Size : 14,782,419,696

: Windows 10 Pro
Description : Windows
Size : 13,975,944,782

Index : 7

36

EXPERIMENT 0.0

DISCOVERY #2

Mysterious other kernels in WinSxS

5. Multiple Kernels?

Is it ever possible for multiple kernels to exist at Windows\System32?
Also, should | be looking at the other kernels not in this directory, e.g.:

37

EXPERIMENT 0.0

DISCOVERY #2

5. Multiple Kernels?

Is it ever possible for multiple kernels to exist at Windows\System32?
Also, should | be looking at the other kernels not in this directory, e.g.:

38

EXPERIMENT 0.0

DISCOVERY #2

Mysterious other kernels in WinSx5

5. Multiple Kernels?

Is it ever possible for multiple kernels to exist at Windows\System32?
Also, should | be looking at the other kernels not in this directory, e.g.:

5. it looks like those might be diffs to produce the same file
based on this? seems like only one of them should be
necessary. That link gives some info about parsing the

diff files, so you can confirm/deny.

39

EXPERIMENT 0.0

DISCOVERY #2

Mysterious other kernels in WinSx5

5. Multiple Kernels?

Is it ever possible for multiple kernels to exist at Windows\System32?
Also, should | be looking at the other kernels not in this directory, e.g.:

5. it looks like those might be diffs to produce the same file
based on this? seems like only one of them should be
necessary. That link gives some info about parsing the

diff files, so you can confirm/deny.

3. WinSxS

He also said the different ntoskrnl.exe files in
Windows\WinSxS are previous versions of the kernel for
backup purposes. So | started to research this and thought
the WinSxS folder deserved a shoutout (forgive me if I'm
repeating old/irrelevant news). WinSxS stores multiple
versions of system files. | though this somewhat parallels the
idea of observing how the system changes given a sequence
of CABs.

The article you shared also had an interesting blurb on WinSxS
manifests:

The .manifest files in the patch describe how the patch is
to be applied, the files that are part of the patch, the
expected result of the patch in the form of file hashes,
permissions of the resulting files, registry keys to set, and
more.

Maybe this "expected result" could also be used in our
experiments?

40

EXPERIMENT 0.0

DISCOVERY #2

Mysterious other kernels in WinSx5

5. Multiple Kernels?

Is it ever possible for multiple kernels to exist at Windows\System32?
Also, should | be looking at the other kernels not in this directory, e.g.:

5. it looks like those might be diffs to produce the same file
based on this? seems like only one of them should be
necessary. That link gives some info about parsing the

diff files, so you can confirm/deny.

3. WinSxS

He also said the different ntoskrnl.exe files in

Windows\WinSxS are previous versions of the kernel for

backup purposes. So | started to research this and thought Patc h d e Itas !
the WinSxS folder deserved a shoutout (forgive me if I'm

repeating old/irrelevant news). WinSxS stores multiple

versions of system files. | though this somewhat parallels the

idea of observing how the system changes given a sequence

of CABs.

The article you shared also had an interesting blurb on WinSxS
manifests:

The .manifest files in the patch describe how the patch is
to be applied, the files that are part of the patch, the
expected result of the patch in the form of file hashes,
permissions of the resulting files, registry keys to set, and
more.

Maybe this "expected result" could also be used in our
experiments?

41

EXPERIMENT 0.0

DISCOVERY #2

Mysterious other kernels in WinSx5

5. Multiple Kernels?

Is it ever possible for multiple kernels to exist at Windows\System32?
Also, should | be looking at the other kernels not in this directory, e.g.:

5. it looks like those might be diffs to produce the same file
based on this? seems like only one of them should be
necessary. That link gives some info about parsing the

diff files, so you can confirm/deny.

3. WinSxS

He also said the different ntoskrnl.exe files in

Windows\WinSxS are previous versions of the kernel for

backup purposes. So | started to research this and thought Patc h d e Itas !
the WinSxS folder deserved a shoutout (forgive me if I'm

repeating old/irrelevant news). WinSxS stores multiple

versions of system files. | though this somewhat parallels the

idea of observing how the system changes given a sequence

of CABs.

The article you shared also had an interesting blurb on WinSxS
manifests:

The .manifest files in the patch describe how the patch is

to be applied, the files that are part of the patch, the 1 1 |
expected result of the patch in the form of file hashes, man Ife St fl I €es.
permissions of the resulting files, registry keys to set, and

more.

Maybe this "expected result" could also be used in our
experiments?

Mysterious other kernels in WinSx5

5. Multiple Kernels?

Is it ever possible for multiple kernels to exist at Windows\System32?
Also, should | be looking at the other kernels not in this directory, e.g.:

E X P E R I M E N T O O 5. it looks like those might be diffs to produce the same file

based on this? seems like only one of them should be
necessary. That link gives some info about parsing the
diff files, so you can confirm/deny.

DISCOVERY #2

3. WinSxS

He also said the different ntoskrnl.exe files in
Windows\WinSxS are previous versions of the kernel for
backup purposes. So | started to research this and thought Patc h d e Itas !
the WinSxS folder deserved a shoutout (forgive me if I'm
repeating old/irrelevant news). WinSxS stores multiple
versions of system files. | though this somewhat parallels the

idea of observing how the system changes given a sequence Components Of an u Pdate
of CABs. C AB

The article you shared also had an interesting blurb on WinSxS
manifests:

The .manifest files in the patch describe how the patch is

to be applied, the files that are part of the patch, the 1 1 |
expected result of the patch in the form of file hashes, man Ife St fl I €es.
permissions of the resulting files, registry keys to set, and

more.

Maybe this "expected result" could also be used in our
experiments?

43

EXPERIMENT 0.0

DISCOVERY #2

Mysterious other kernels in WinSx5

5. Multiple Kernels?

Is it ever possible for multiple kernels to exist at Windows\System32?
Also, should | be looking at the other kernels not in this directory, e.g.:

3. WinSxS

5. it looks like those might be diffs to produce the same file
based on this? seems like only one of them should be
necessary. That link gives some info about parsing the

diff files, so you can confirm/deny.

He also said the different ntoskrnl.exe files in

Windows\WinSxS are previous versions of the kernel for

backup purposes. So | started to research this and thought Patc h d e Itas !
the WinSxS folder deserved a shoutout (forgive me if I'm

repeating old/irrelevant news). WinSxS stores multiple

versions of system files. | though this somewhat parallels the
idea of observing how the system changes given a sequence

of CABs.

Components of an update
CAB

The article you shared also had an interesting blurb on WinSxS

manifests:

The .manifest files in the patch describe how the patch is
to be applied, the files that are part of the patch, the 1 1 |
expected result of the patch in the form of file hashes, man Ife St fl I €es.
permissions of the resulting files, registry keys to set, and

more.

Benchmark results

Maybe this "expected result" could also be used in our

experiments?

A CAB failed, weird error(s)

Trying to debug this while also investigating “patch deltas”
discovery

PS C:\Users\Administrator> Dism /Image:C:\experiment_0@\mount /Add-Package /PackagePath:C:\experiment_0@\cab_bag\winl@-1
909-x64 \windows10.0-kb4495666-x64_34bcead735afc154bf9115d954a3179537af1c60.cab

Deployment Image Servicing and Management tool
Version: 10.0.20348.681

Image Version: 10.0.18362.30

Processing 1 of 1 - Adding package Package_for_RollupFix~31bf3856ad364e35~amd64~~18362.53.1.5

[========s====s====sz====2=100.0%=s===cscsscsazscszsszcaasxz]

An error occurred - Package_for_RollupFix Error: 0x80070002
Error: 2
IThe system cannot find the file specified.

An error occurred closing a servicing component in the image.
Wait a few minutes and try running the command again.

The DISM log file can be found at C:\Windows\Logs\DISM\dism.log

A CAB failed, weird error(s)

Trying to debug this while also investigating “patch deltas”
discovery

PS C:\Users\Administrator> Dism /Image:C:\experiment_0@\mount /Add-Package /PackagePath:C:\experiment_0@\cab_bag\winl@-1
909-x64 \windows10.0-kb4495666-x64_34bcead735afc154bf9115d954a3179537af1c60.cab

Deployment Image Servicing and Management tool
Version: 10.0.20348.681

Image Version: 10.0.18362.30

Processing 1 of 1 - Adding package Package_for_RollupFix~31bf3856ad364e35~amd64~~18362.53.1.5

[========s====s====sz====2=100.0%=s===cscsscsazscszsszcaasxz]

An error occurred - Package_for_RollupFix Error: 0x80070002
Error: 2

IThe system cannot find the file specified.

An error occurred closing a servicing component in the image.

Wait a few minutes and try running the command again.

The DISM log file can be found at C:\Windows\Logs\DISM\dism.log

What if | try to apply the kernel patch delta from this
failing CAB? Will it also fail?

46

EXPERIMENT 0.0

DISCOVERY #3

Error 2 in DISM leads to MSDelta

Patch delta didn’t fail, but entire CAB did!

47

EXPERIMENT 0.0

DISCOVERY #3

Error 2 in DISM leads to MSDelta

Patch delta didn’t fail, but entire CAB did!

| applied the kernel-specific patch delta, rather than the
whole CAB (which fails), using MSDelta (not DISM).

EXPERIMENT 0.0

DISCOVERY #3

48

Error 2 in DISM leads to MSDelta

Patch delta didn’t fail, but entire CAB did!

| applied the kernel-specific patch delta, rather than the
whole CAB (which fails), using MSDelta (not DISM).

* |.Reverse current kernel to a base state

Base Start
version version

49

EXPERIMENT 0.0

DISCOVERY #3

Error 2 in DISM leads to MSDelta

Patch delta didn’t fail, but entire CAB did!

| applied the kernel-specific patch delta, rather than the
whole CAB (which fails), using MSDelta (not DISM).

* |.Reverse current kernel to a base state
WinSxS (inside the WIM mount, not cab) contains a reverse diff for the kernel. We can

apply it to roll back our current kernel to a "historical” base version. Then, we start
at this checkpoint to apply a new patch (next step).

Base Start
version version

EXPERIMENT 0.0

DISCOVERY #3

50

Error 2 in DISM leads to MSDelta

Patch delta didn’t fail, but entire CAB did!

| applied the kernel-specific patch delta, rather than the
whole CAB (which fails), using MSDelta (not DISM).

* |.Reverse current kernel to a base state
WinSxS (inside the WIM mount, not cab) contains a reverse diff for the kernel. We can

apply it to roll back our current kernel to a "historical” base version. Then, we start
at this checkpoint to apply a new patch (next step).

* 2.Forward to a new state from patch of your
choice

End
(new)
version

Base Start
version version

EXPERIMENT 0.0

DISCOVERY #3

51

Error 2 in DISM leads to MSDelta

Patch delta didn’t fail, but entire CAB did!

| applied the kernel-specific patch delta, rather than the
whole CAB (which fails), using MSDelta (not DISM).

* |.Reverse current kernel to a base state
WinSxS (inside the WIM mount, not cab) contains a reverse diff for the kernel. We can

apply it to roll back our current kernel to a "historical” base version. Then, we start
at this checkpoint to apply a new patch (next step).

* 2.Forward to a new state from patch of your
choice
Now we turn to the cab (not WIM mount). We isolate the kernel delta, which

contains a forward diff. This forward diff must be applied to a known state, the
checkpoint from step |. Then, the manifest hash is produced!

End
(new)
version

Base Start
version version

52

EXPERIMENT 0.0

DISCOVERY #3

Error 2 in DISM leads to MSDelta

* Key takeaways

Base
version

Start
version

End
(new)
version

53

EXPERIMENT 0.0

DISCOVERY #3

Error 2 in DISM leads to MSDelta

* Key takeaways

* Kernel patch component succeeded (MSDelta) despite the

entire CAB failing (DISM)

Base
version

Start
version

End
(new)
version

EXPERIMENT 0.0

DISCOVERY #3

54

Error 2 in DISM leads to MSDelta

* Key takeaways

* Kernel patch component succeeded (MSDelta) despite the
entire CAB failing (DISM)

* Error most likely for another file’s patch component, not
kernel

End
(new)
version

Base Start
version version

IS MSDELTA BETTER THAN DISM?

(Can we use it to more efficiently extract kernel PEs?)

IS MSDELTA BETTER THAN DISM?

| made an experiment framework that runs trials with both DISM and MSDelta

IS MSDELTA BETTER THAN DISM?

| made an experiment framework that runs trials with both DISM and MSDelta

VS.

IS MSDELTA BETTER THAN DISM?

| made an experiment framework that runs trials with both DISM and MSDelta

“Both are completely different approaches. One is welding. The other is sewing.Your
experiments run them in parallel to see which is superior.”

Paraphrasing Jason again

VS.

IS MSDELTA BETTER THAN DISM?

Research Objectives

IS MSDELTA BETTER THAN DISM?

Research Objectives

* Figure out logic of a successful CAB
(problem in current Windows update
processing)

IS MSDELTA BETTER THAN DISM?

Research Objectives

* Figure out logic of a successful CAB * Determine whether to use MSDelta or
(problem in current Windows update DISM
processing)

IS MSDELTA BETTER THAN DISM?

Figure out logic of a successful CAB
(problem in current Windows update
processing)

CAB-WIM Success Logic: Can we
predict when a CAB will successfully

apply to a WIM?

Determine whether to use MSDelta or
DISM

IS MSDELTA BETTER THAN DISM?

Figure out logic of a successful CAB Determine whether to use MSDelta or
(problem in current Windows update DISM
processing)

CAB-WIM Success Logic: Can we
predict when a CAB will successfully

apply to a WIM?

CAB Order: Can we successfully apply
CABs out of order? Can we produce a

new kernel with a mis-ordered sequence
of CABs!?

IS MSDELTA BETTER THAN DISM?

Figure out logic of a successful CAB Determine whether to use MSDelta or

(problem in current Windows update DISM

processing) MSDelta Reliability: Is there ever a
CAB-WIM Success Logic: Can we case where a CAB applies successfully in
predict when a CAB will successfully DISM but a patch component in MSDelta
apply to aWIM? doesn't?

CAB Order: Can we successfully apply
CABs out of order? Can we produce a

new kernel with a mis-ordered sequence
of CABs!?

IS MSDELTA BETTER THAN DISM?

Master Experiment

Other Experiments

*© 6,071 trials - CAB sequential experiments
* 13 images (WIM versions) . 860 trials
* 231 CABs (inner-most) - 9 images
* Trial types
= 3,003 CAB isolated trials (DISM)
* 3,003 Patch component trials (MSDelta)

* 65 CAB sequential trials (DISM)

* 144 CABs (not all were applied to every WIM)
< All 1909 CABs
* 2 images

* 40 CABs “for” 1909
* 5 per image (had to do other experiments with > or

smaller range of CABs) * Other baby experiments

66

PATCH DELTAS

‘““Paired Delta Approach”

Base
version

Start
version

End
(new)
version

“Paired Delta Approach”

PATCH DELTAS End

Base Start
: : (new)
version version .
version

* Why this approach? Linear rather than quadratic
growth in size of updates

* @)Jason, plus more in appendix

67

* When extracting patch components for a CAB, each
component has:

ANATOMY OF A

PATCH COMPONENT

* When extracting patch components for a CAB, each
component has:

* Patch deltas (executables applied to a target file, e.g.,
ntoskrnl.exe)

ANATOMY OF A

PATCH COMPONENT

* When extracting patch components for a CAB, each
component has:

* Patch deltas (executables applied to a target file, e.g.,
ntoskrnl.exe)

* A corresponding manifest file (which may be in a
different CAB than the exes)

ANATOMY OF A

PATCH COMPONENT

* When extracting patch components for a CAB, each
component has:

* Patch deltas (executables applied to a target file, e.g.,
ntoskrnl.exe)

* A corresponding manifest file (which may be in a
different CAB than the exes)

A N ATO M Y O F A - master_experiment > deltas > 042 » v 0
PAT C H C O M P O N E N T) Name - Date modified Type

B amd64_microsoft-windows-os-kernel_31bf38... 2/3/2022 2:15 PM File folder
| amd64_microsoft-windows-os-kernel_31bf38... 6/4/2021 7:55 PM MANIFEST File

* When extracting patch components for a CAB, each
component has:

* Patch deltas (executables applied to a target file, e.g.,
ntoskrnl.exe)

* A corresponding manifest file (which may be in a
different CAB than the exes)

A N ATO M Y O F A - master_experiment > deltas > 042 » v 0
PAT C H C O M P O N E N T) Name - Date modified Type

B amd64_microsoft-windows-os-kernel_31bf38... 2/3/2022 2:15 PM File folder
| amd64_microsoft-windows-os-kernel_31bf38... 6/4/2021 7:55 PM MANIFEST File

+ Contains expected result of the
manifest files! patch in the form of hashes (and
kernel versions)

* When extracting patch components for a CAB, each
component has:

* Patch deltas (executables applied to a target file, e.g.,
ntoskrnl.exe)

* A corresponding manifest file (which may be in a
different CAB than the exes)

A N ATO M Y O F A - master_experiment > deltas > 042 » v 0
PAT C H C O M P O N E N T) Name - Date modified Type

B amd64_microsoft-windows-os-kernel_31bf38... 2/3/2022 2:15 PM File folder
| amd64_microsoft-windows-os-kernel_31bf38... 6/4/2021 7:55 PM MANIFEST File

+ Contains expected result of the
manifest files! patch in the form of hashes (and
kernel versions)

WinSxS Manifests

The .manifest files in the patch describe how the patch is to be applied, the files that are part of the patch, the expected result of the patch in
the form of file hashes, permissions of the resulting files, registry keys to set, and more. They define the effects that happen to the system
other than replacing the file that is being updated.

patch deltas!

credit: wumb0 article

Scenario #1: Paired Deltas

* Forward diffs (f) — brings the base binary (.1) up to a particular
patch level

ANATOMY OF A

PATCH COMPONENT

https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html

patch deltas!

credit: wumb0 article

Scenario #1: Paired Deltas

* Forward diffs (f) — brings the base binary (.1) up to a particular
patch level

* Reverse diffs (r) — reverts the applied patch back to the base
binary (.1)

ANATOMY OF A

PATCH COMPONENT

https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html

patch deltas!

credit: wumb0 article

Scenario #1: Paired Deltas

* Forward diffs (f) — brings the base binary (.1) up to a particular
patch level

* Reverse diffs (r) — reverts the applied patch back to the base
binary (.1)

ANATOMY OF A

PATCH COMPONENT “You will always see r and f folders together inside of a patch because you need

to be able to revert the patch later on to apply a newer update.” —wumb0

amd64_microsoft-windows-os-kernel_31bf3856ad364e35_10.0.19041.1052_non... > v O Searc
~
A Name Date modified Type Siz
Y 8/3/2022 2:15 PM File folder

Y 8/3/2022 2:15PM File folder

https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html

patch deltas!

credit: wumb0 article

Scenario #1: Paired Deltas

* Forward diffs (f) — brings the base binary (.1) up to a particular
patch level

* Reverse diffs (r) — reverts the applied patch back to the base
binary (.1)

ANATOMY OF A

PATCH COMPONENT “You will always see r and f folders together inside of a patch because you need

to be able to revert the patch later on to apply a newer update.” —wumb0

amd64_microsoft-windows-os-kernel_31bf3856ad364e35_10.0.19041.1052_non... > v O Searc
~

A Name Date modified Type Siz
Y 8/3/2022 2:15 PM File folder
L] r 8/3/2022 2:15 PM File folder

View
164_microsoft-windows-os-kernel_31bf3856ad364e35_10.0.19041.1052_none_e10b2f... > f v 0 Search f
A Name - Date modified Type Size

[ntoskrnl.exe 6/5/2021 5:42 PM Application 1,524 KB

https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html

patch deltas!

credit: wumb0 article

Scenario #1: Paired Deltas

* Forward diffs (f) — brings the base binary (.1) up to a particular
patch level

* Reverse diffs (r) — reverts the applied patch back to the base
binary (.1)

ANATOMY OF A

PATCH COMPONENT “You will always see r and f folders together inside of a patch because you need

to be able to revert the patch later on to apply a newer update.” —wumb0

amd64_microsoft-windows-os-kernel_31bf3856ad364e35_10.0.19041.1052_non... > v O Searc
~

A Name Date modified Type Siz
Y 8/3/2022 2:15 PM File folder
L] r 8/3/2022 2:15 PM File folder

View
164_microsoft-windows-os-kernel_31bf3856ad364e35_10.0.19041.1052_none_e10b2f... > f v 0 Search f
A Name - Date modified Type Size
[ntoskrnl.exe 6/5/2021 5:42 PM Application 1,524 KB

Not an executable! An MSDelta patch file
(PA30)

https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html

patch deltas!

credit: wumb0 article

Scenario #2: Null Diff

* Null diffs (n) — a completely new file, just compressed; apply to
an empty buffer to get the full file

* Root or n subdirectory

A N ATO M Y O F A » amd64_microsoft-windows-os-kernel_31bf3856ad364e35_10.0.14393.... v | D
PAT C H C O M P O N E N T A Name B Date modified Type Size

[ntoskrnl.exe 2/5/2019 9:03 PM Application 7,605 KB

https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html

patch deltas!

credit: wumb0 article

Scenario #2: Null Diff

* Null diffs (n) — a completely new file, just compressed; apply to
an empty buffer to get the full file

* Root or n subdirectory

A N ATO M Y O F A » amd64_microsoft-windows-os-kernel_31bf3856ad364e35_10.0.14393.... v | D
PAT C H C O M P O N E N T A Name B Date modified Type Size

[ntoskrnl.exe 2/5/2019 9:03 PM Application 7,605 KB

This is an executable

https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html

8l

ANATOMY OF A
KERNEL BUILD
NUMBER

A kernel build nhumber:

10.0.17763.55

82

ANATOMY OF A
KERNEL BUILD
NUMBER

A kernel build nhumber:

10.0.17763.55

Major.Minor.Build.Revision

83

ANATOMY OF A
KERNEL BUILD
NUMBER

A kernel build nhumber:

10.0.17763.55

Major.Minor.Build.Revision

* According to Microsoft:

* Base version: A major software release with significant
changes, such as Windows [0, version 1809 (Windows 10
Build 17763.1)

Revision: Minor releases in between the major version
releases, such as KB4464330 (Windows 10 Build 17763.55)

CAB-WIM SUCCESS LOGIC

Q: Can we predict when a CAB will successfully apply to aWIM?

CAB-WIM SUCCESS LOGIC

Q: Can we predict when a CAB will successfully apply to aWIM?

A: Yes.

CAB-WIM SUCCESS LOGIC

Q: Can we predict when a CAB will successfully apply to aWIM?

A: Yes.

Success is based on both build AND revision number

Research Objective:

Figure out logic of successful CAB

CAB-WIM SUCCESS LOGIC

Q: Can we predict when a CAB will successfully apply to a WIM?

° A: Yes.

* Success is based on both build AND revision number

XA17763)

Major.Minor.m.

Research Objective:

Figure out logic of successful CAB

CAB-WIM SUCCESS LOGIC

Q: Can we predict when a CAB will successfully apply to a WIM?

* A: Yes.
* Success is based on both build AND revision humber
* Success = no errors + new kernel

* More nuanced in the full results (e.g.,, CABSs without kernel deltas)

XA17763)

Major.Minor.m.

Research Objective:

Figure out logic of successful CAB

CAB-WIM SUCCESS LOGIC

* Successful Patches (CAB and Patch Component)

Major.Minor.m.

Research Objective:

Figure out logic of successful CAB

CAB-WIM SUCCESS LOGIC

* Successful Patches (CAB and Patch Component)

* All successful patches had:

Major.Minor.m.

Research Objective:

Figure out logic of successful CAB

CAB-WIM SUCCESS LOGIC

* Successful Patches (CAB and Patch Component)
 All successful patches had:

* build numbers equal to the build number of a given WIM, and

KRI 776310

KRI 776381

Major.Minor.m.

Research Objective:

Figure out logic of successful CAB

CAB-WIM SUCCESS LOGIC

* Successful Patches (CAB and Patch Component)
* All successful patches had:
* build numbers equal to the build number of a given WIM, and

* arevision number greater than that of the WIM

KR 77638

XA17763)

Major.Minor.m.

Research Objective:

Figure out logic of successful CAB

CAB-WIM SUCCESS LOGIC

* Successful Patches (CAB and Patch Component)
 All successful patches had:
* build numbers equal to the build number of a given WIM, and
* arevision number greater than that of the WIM

X17763)

Golden Rule for a Successful Patch

XA17763)

A patch component for 10.0.x.y will only

successfully apply to 10.0.a.b if x==a and y>b.

Major.Minor.m.

Note: the edgeltrivial case of x==a AND y==b (patch is the
same as the image) was not tested in this project.

Research Objective:

Figure out logic of successful CAB

CAB ORDER

Q: Can we successfully apply CABs out of order?

Q: Can we produce a new kernel with a mis-ordered sequence of CABs?

Research Objective:

Figure out logic of successful CAB

CAB ORDER

Q: Can we successfully apply CABs out of order?

Q: Can we produce a new kernel with a mis-ordered sequence of CABs?

* A:Sometimes.

Research Objective:

Figure out logic of successful CAB

CAB ORDER

Q: Can we successfully apply CABs out of order?

Q: Can we produce a new kernel with a mis-ordered sequence of CABs?

* A:Sometimes.

Not super important.

MSDelta is now hot
shot.

Research Objective:

Figure out logic of successful CAB

CAB ORDER

Q: Can we successfully apply CABs out of order?

Q: Can we produce a new kernel with a mis-ordered sequence of CABs?

* A:Sometimes.

* Depends on whether there are CABs in the sequence with the potential to
successfully apply (build number matches WIM)

Not super important.

MSDelta is now hot
shot.

Research Objective:

Figure out logic of successful CAB

CAB ORDER

Q: Can we successfully apply CABs out of order?

Q: Can we produce a new kernel with a mis-ordered sequence of CABs?

* A:Sometimes.

* Depends on whether there are CABs in the sequence with the potential to
successfully apply (build number matches WIM)

Not super LIRS L f 5o, the final kernel takes the CAB with the most recent kernel version, even if that
MSDelta is now hot CAB wasn’t the last CAB applied.
shot.

Research Objective:

Figure out logic of successful CAB

CAB ORDER

Q: Can we successfully apply CABs out of order?

Q: Can we produce a new kernel with a mis-ordered sequence of CABs?

* A:Sometimes.

* Depends on whether there are CABs in the sequence with the potential to
successfully apply (build number matches WIM)

Not super important. If so, the final kernel takes the CAB with the most recent kernel version, even if that

MSDelta is now hot
shot.

CAB wasn’t the last CAB applied.

The ability of a CAB sequence to produce a new kernel depends on whether a failed
CAB in the sequence (if there is one) corrupts the mount image, thereby ruining
subsequent CABs from successfully applying.

Research Objective:

Determine whether to use MSDelta or DISM

MSDELTA RELIABILITY

Q: Is there ever a case where a CAB applies successfully in DISM but a patch
component in MSDelta doesn’t?

Research Objective:

Determine whether to use MSDelta or DISM

MSDELTA RELIABILITY

Q: Is there ever a case where a CAB applies successfully in DISM but a patch
component in MSDelta doesn’t?

* A:No.

MSDELTA RELIABILITY

Q: Is there ever a case where a CAB applies successfully in DISM but a patch
component in MSDelta doesn’t?

A: No.

For all observed trials, when MSDelta fails, the corresponding DISM trial also fails.
There are no observed cases of an MSDelta trial failing and the corresponding DISM
trial succeeding.

MSDELTA RELIABILITY

Q: Is there ever a case where a CAB applies successfully in DISM but a patch
component in MSDelta doesn’t?

A: No.

For all observed trials, when MSDelta fails, the corresponding DISM trial also fails.
There are no observed cases of an MSDelta trial failing and the corresponding DISM

trial succeeding.

In addition, DISM trials are less reliable than MSDelta trials, since it is still possible for
a DISM trial to fail despite a matching build number.

MSDELTA RELIABILITY

Q: Is there ever a case where a CAB applies successfully in DISM but a patch
component in MSDelta doesn’t?

A: No.

For all observed trials, when MSDelta fails, the corresponding DISM trial also fails.
There are no observed cases of an MSDelta trial failing and the corresponding DISM

trial succeeding.

In addition, DISM trials are less reliable than MSDelta trials, since it is still possible for
a DISM trial to fail despite a matching build number.

We do not see this in MSDelta trials due to the reverse diffing process of
applying patch components.

MSDELTA RELIABILITY

Q: Is there ever a case where a CAB applies successfully in DISM but a patch
component in MSDelta doesn’t?

A: No.

For all observed trials, when MSDelta fails, the corresponding DISM trial also fails.
There are no observed cases of an MSDelta trial failing and the corresponding DISM

trial succeeding.

In addition, DISM trials are less reliable than MSDelta trials, since it is still possible for
a DISM trial to fail despite a matching build number.

We do not see this in MSDelta trials due to the reverse diffing process of
applying patch components.

Therefore, we can predict whether MSDelta will successfully apply a patch component just
based on build numbers

CONCLUSIONS

CONCLUSIONS

MSDelta beats DISM

CONCLUSIONS

MSDelta beats DISM

Golden Rule for successful patch

108

MSDELTA BEATS DISM

MSDELTA BEATS DISM

More precise

Just the kernel patch, not entire CAB

MSDELTA BEATS DISM

More precise
Just the kernel patch, not entire CAB
Much faster

No mounting/unmounting for every trial — only need base version
30 mins in MSDelta vs. 2.5 hours in DISM

MSDELTA BEATS DISM

More precise
Just the kernel patch, not entire CAB
Much faster
No mounting/unmounting for every trial — only need base version
30 mins in MSDelta vs. 2.5 hours in DISM
More reliable
Succeeds in some cases where DISM fails (never vice versa)

Theory: isolates kernel patch from corruption in other components’ patches

MSDELTA BEATS DISM

More precise
Just the kernel patch, not entire CAB
Much faster
No mounting/unmounting for every trial — only need base version
30 mins in MSDelta vs. 2.5 hours in DISM
More reliable
Succeeds in some cases where DISM fails (never vice versa)
Theory: isolates kernel patch from corruption in other components’ patches
Likely to be able to run on other platforms
DLL — doesn’t require Windows system services (distributed with Wine)

Whereas DISM depends on other Windows system services

MSDELTA BEATS DISM

More precise
Just the kernel patch, not entire CAB
Much faster
No mounting/unmounting for every trial — only need base version
30 mins in MSDelta vs. 2.5 hours in DISM
More reliable
Succeeds in some cases where DISM fails (never vice versa)
Theory: isolates kernel patch from corruption in other components’ patches
Likely to be able to run on other platforms
DLL — doesn’t require Windows system services (distributed with Wine)
Whereas DISM depends on other Windows system services
Bonus: sheds light on how DISM’s “Add-Package” command works
Used to apply a full CAB

MSDELTA BEATS DISM

More precise
Just the kernel patch, not entire CAB
Much faster
No mounting/unmounting for every trial — only need base version
30 mins in MSDelta vs. 2.5 hours in DISM
More reliable
Succeeds in some cases where DISM fails (never vice versa)
Theory:isolates kernel patch from corruption in other components’ patches
Likely to be able to run on other platforms
DLL — doesn’t require Windows system services (distributed with Wine)
Whereas DISM depends on other Windows system services
Bonus: sheds light on how DISM’s “Add-Package” command works
Used to apply a full CAB

“There’s work to do.”

Right now, just a proof of
concept

GOLDEN RULE

GOLDEN RULE

A patch component for 10.0.x.y will only

successfully apply to 10.0.a.b if x==a and
y>b.

GOLDEN RULE

A patch component for 10.0.x.y will only

successfully apply to 10.0.a.b if x==a and
y>b.

TLDR
* Build numbers must match
* Revision number of patch must be greater than that of WIM/base version

GOLDEN RULE

* We figured out something about the logic of a CAB!
* Help predict whether kernel patch component will successfully apply.

A patch component for 10.0.x.y will only

successfully apply to 10.0.a.b if x==a and
y>b.

TLDR
* Build numbers must match
* Revision number of patch must be greater than that of WIM/base version

THANKS FOR AN AWESOME
INTERNSHIP

£3
ior Developer
‘ Intern
r

Produc_tion

QUESTIONS

APPENDIX

PAIRED DELTAS DEEP DIVE

Vo+ Dosn = Vn

Base File Forwarc! Delta

S Instructions
E S Copy {1:3}

<h1>This is a Heading</hl> “ n
pThis is a pragraph.c/py @) Delete “paragraph ‘

<h2>This is another Heading</h2> Insert “different”

</body> Copy {5:7}

Intermediate RTM State

for next update’s Forward Delta

<body>

<h1>This is a Heading</hl>

- <p>This is a paragraph.</p>

<h2>This is another Heading</h2>

</body>

&

Target File

<body>

<h1>This is a Heading</hl>

: <h1>Something different.</hl1>

<h2>This is another Heading</h2>

</body>

Reverse Delta
Instructions

Copy {1:3}

Insert “paragraph”
Delete “different”
Copy {5:7}

The delta pairs used in Windows Updates. The endpoints that have the base version of the file (V0) hydrate the target revision

(VN) by applying a delta.

WORKS REFERENCED

* Extracting and Diffing Windows Patches in 2020 - wumb0Qin'

* Windows Updates using forward and reverse differentials - Windows
Deployment | Microsoft Docs

* How Microsoft reduced Windows | | update size by 40% - Microsoft Tech
Community

https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html
https://docs.microsoft.com/en-us/windows/deployment/update/psfxwhitepaper
https://techcommunity.microsoft.com/t5/windows-it-pro-blog/how-microsoft-reduced-windows-11-update-size-by-40/ba-p/2839794

