
1

WINDOWS UPDATE PROCESSING

Sarah Santos

August 10, 2022

2

WHY DO WE NEED WINDOWS
UPDATES?

3

WHY DO WE NEED WINDOWS
UPDATES?

MEMORY FORENSICS

(e.g., Volatility)
End goal: memory forensics, which requires ^

Windows Updates (MSUs) MSU is an update package

4

WHY DO WE NEED WINDOWS
UPDATES?

MEMORY FORENSICS

(e.g., Volatility)

Windows profile

End goal: memory forensics, which requires ^

Right profile for Windows platform, which we build from ^

Windows Updates (MSUs) MSU is an update package

5

WHY DO WE NEED WINDOWS
UPDATES?

MEMORY FORENSICS

(e.g., Volatility)

Windows profile

kernel symbols + data structs

End goal: memory forensics, which requires ^

Right profile for Windows platform, which we build from ^

Symbols and data structures, which are contained in ^

Windows Updates (MSUs) MSU is an update package

6

WHY DO WE NEED WINDOWS
UPDATES?

MEMORY FORENSICS

(e.g., Volatility)

Windows profile

kernel symbols + data structs

kernel PDB files

End goal: memory forensics, which requires ^

Right profile for Windows platform, which we build from ^

Symbols and data structures, which are contained in ^

Kernel PDB files, which involve info from ^

Windows Updates (MSUs) MSU is an update package

PDB = program

database

7

WHY DO WE NEED WINDOWS
UPDATES?

MEMORY FORENSICS

(e.g., Volatility)

Windows profile

kernel symbols + data structs

kernel PDB files

kernel PE files (executables)

End goal: memory forensics, which requires ^

Right profile for Windows platform, which we build from ^

Symbols and data structures, which are contained in ^

Kernel PDB files, which involve info from ^

Kernel PE files (executables), which we derive from ^PE = portable

executable

Windows Updates (MSUs) MSU is an update package

PDB = program

database

8

WHY DO WE NEED WINDOWS
UPDATES?

MEMORY FORENSICS

(e.g., Volatility)

Windows profile

kernel symbols + data structs

kernel PDB files

kernel PE files (executables)

CAB files

End goal: memory forensics, which requires ^

Right profile for Windows platform, which we build from ^

Symbols and data structures, which are contained in ^

Kernel PDB files, which involve info from ^

Kernel PE files (executables), which we derive from ^

CAB files, which are the meat of a ^

PE = portable

executable

CAB = Cabinet

Windows Updates (MSUs) MSU is an update package

PDB = program

database

9

WHY DO WE NEED WINDOWS
UPDATES?

MEMORY FORENSICS

(e.g., Volatility)

Windows profile

kernel symbols + data structs

kernel PDB files

kernel PE files (executables)

CAB files

Windows Updates (MSUs)

End goal: memory forensics, which requires ^

Right profile for Windows platform, which we build from ^

Symbols and data structures, which are contained in ^

Kernel PDB files, which involve info from ^

Kernel PE files (executables), which we derive from ^

CAB files, which are the meat of a ^

Windows Update!

PE = portable

executable

CAB = Cabinet

MSU is an update package

PDB = program

database

10

WHY DO WE NEED WINDOWS
UPDATES?

MEMORY FORENSICS

(e.g., Volatility)

Windows profile

kernel symbols + data structs

kernel PDB files

kernel PE files (executables)

CAB files

Windows Updates (MSUs)

End goal: memory forensics, which requires ^

Right profile for Windows platform, which we build from ^

Symbols and data structures, which are contained in ^

Kernel PDB files, which involve info from ^

Kernel PE files (executables), which we derive from ^

CAB files, which are the meat of a ^

Windows Update!

PE = portable

executable

CAB = Cabinet

MSU is an update package

PDB = program

database

This is “extraction

stack”.

There’s also a

“collection stack”

to get MSUs.

11

WHY DO WE NEED WINDOWS
UPDATES?

MEMORY FORENSICS

(e.g., Volatility)

Windows profile

kernel symbols + data structs

kernel PDB files

kernel PE files (executables)

CAB files

Windows Updates (MSUs)

End goal: memory forensics, which requires ^

Right profile for Windows platform, which we build from ^

Symbols and data structures, which are contained in ^

Kernel PDB files, which involve info from ^

Kernel PE files (executables), which we derive from ^

CAB files, which are the meat of a ^

Windows Update!

PE = portable

executable

CAB = Cabinet

MSU is an update package

PDB = program

database

12

WHY DO WE NEED
WINDOWS
UPDATES?

TLDR: They have the new kernel executables we

need to update/make Windows profiles.

The big question then is how to extract new kernel

executables from CAB files (the meat of a Windows

update).

13

WHY DO WE NEED
WINDOWS
UPDATES?

TLDR: They have the new kernel executables we

need to update/make Windows profiles.

The big question then is how to extract new kernel

executables from CAB files (the meat of a Windows

update).

14

HOW DO WE CURRENTLY EXTRACT
KERNEL EXECUTABLES FROM CABS?

(The Current Process)

15

HOW DO WE CURRENTLY EXTRACT
KERNEL EXECUTABLES FROM CABS?

CAB
ntoskrnl.exe

• Unfortunately, we can’t just directly extract a full kernel exe from a CAB file

16

HOW DO WE CURRENTLY EXTRACT
KERNEL EXECUTABLES FROM CABS?

CAB
ntoskrnl.exe

• Unfortunately, we can’t just directly extract a full kernel exe from a CAB file

• We could apply the CAB to a Windows machine to produce the new kernel

executable

17

HOW DO WE CURRENTLY EXTRACT
KERNEL EXECUTABLES FROM CABS?

WIM
CAB

ntoskrnl.exe

• Unfortunately, we can’t just directly extract a full kernel exe from a CAB file

• We could apply the CAB to a Windows machine to produce the new kernel

executable

• Instead of an entire Windows machine, we use a WIM (Windows image)

• WIM = “baby Windows file system” (to quote Jason)

18

HOW DO WE CURRENTLY EXTRACT
KERNEL EXECUTABLES FROM CABS?

WIM
CAB

ntoskrnl.exe

• Unfortunately, we can’t just directly extract a full kernel exe from a CAB file

• We could apply the CAB to a Windows machine to produce the new kernel

executable

• Instead of an entire Windows machine, we use a WIM (Windows image)

• WIM = “baby Windows file system” (to quote Jason)

19

HOW DO WE CURRENTLY EXTRACT
KERNEL EXECUTABLES FROM CABS?

WIM
CAB

ntoskrnl.exe

Windows\System32\ntoskrnl.exe

• Unfortunately, we can’t just directly extract a full kernel exe from a CAB file

• We could apply the CAB to a Windows machine to produce the new kernel

executable

• Instead of an entire Windows machine, we use a WIM (Windows image)

• WIM = “baby Windows file system” (to quote Jason)

20

APPLYING CABS
WITH DISM

(to fake the full update process with a WIM)

21

APPLYING CABS
WITH DISM

(to fake the full update process with a WIM)

22

CAN WE IMPROVE OUR DISM
PROCESS?

(My goal for the summer)

23

CAN WE IMPROVE OUR DISM PROCESS?

• Can we make it leaner, more efficient?

• Run experiments to find out

24

CAN WE IMPROVE OUR DISM PROCESS?

• Can we make it leaner, more efficient?

• Run experiments to find out

• Humble beginnings

• Learning DISM

• Automating DISM in Python

25

CAN WE IMPROVE OUR DISM PROCESS?

• Can we make it leaner, more efficient?

• Run experiments to find out

• Humble beginnings

• Learning DISM

• Automating DISM in Python

• Eventually, kicked off Experiment 0.0

• All while experiencing DISM’s weak spots

26

CAN WE IMPROVE OUR DISM PROCESS?

• PROBLEM: a CAB doesn’t always

successfully apply to a WIM

27

CAN WE IMPROVE OUR DISM PROCESS?

• PROBLEM: a CAB doesn’t always

successfully apply to a WIM - we don’t

know why/when

28

CAN WE IMPROVE OUR DISM PROCESS?

• PROBLEM: a CAB doesn’t always

successfully apply to a WIM - we don’t

know why/when

• Missing the logic for how to determine a

successful CAB

29

CAN WE IMPROVE OUR DISM PROCESS?

• PROBLEM: a CAB doesn’t always

successfully apply to a WIM - we don’t

know why/when

• Missing the logic for how to determine a

successful CAB

• We use number of heuristics to

approximate in current process

30

CAN WE IMPROVE OUR DISM PROCESS?

• PROBLEM: a CAB doesn’t always

successfully apply to a WIM - we don’t

know why/when

• Missing the logic for how to determine a

successful CAB

• We use number of heuristics to

approximate in current process

• PROBLEM: DISM is dismally slow

31

CAN WE IMPROVE OUR DISM PROCESS?

• PROBLEM: a CAB doesn’t always

successfully apply to a WIM - we don’t

know why/when

• Missing the logic for how to determine a

successful CAB

• We use number of heuristics to

approximate in current process

• PROBLEM: DISM is dismally slow

• Requires mounting and unmounting a WIM

32

CAN WE IMPROVE OUR DISM PROCESS?

• PROBLEM: a CAB doesn’t always

successfully apply to a WIM - we don’t

know why/when

• Missing the logic for how to determine a

successful CAB

• We use number of heuristics to

approximate in current process

• PROBLEM: DISM is dismally slow

• Requires mounting and unmounting a WIM

• /Add-Package can take a while

• Applies the entire CAB file, which has a

bunch of other things besides the kernel

update

33

EXPERIMENT 0.0

DISCOVERY #1

Multiple images in a single WIM file

34

• Different editions of same Windows version, but same

kernel

EXPERIMENT 0.0

DISCOVERY #1

Multiple images in a single WIM file

35

• Different editions of same Windows version, but same

kernel

• Optimize framework by only taking smallest sized

image

EXPERIMENT 0.0

DISCOVERY #1

Multiple images in a single WIM file

36

EXPERIMENT 0.0

DISCOVERY #2

Mysterious other kernels in WinSxS

37

EXPERIMENT 0.0

DISCOVERY #2

Mysterious other kernels in WinSxS

38

EXPERIMENT 0.0

DISCOVERY #2

Mysterious other kernels in WinSxS

39

EXPERIMENT 0.0

DISCOVERY #2

Mysterious other kernels in WinSxS

40

patch deltas!

EXPERIMENT 0.0

DISCOVERY #2

Mysterious other kernels in WinSxS

41

manifest files!

patch deltas!

EXPERIMENT 0.0

DISCOVERY #2

Mysterious other kernels in WinSxS

42

manifest files!

patch deltas!

EXPERIMENT 0.0

DISCOVERY #2

Mysterious other kernels in WinSxS

Components of an update

CAB

43

manifest files!

patch deltas!

EXPERIMENT 0.0

DISCOVERY #2

Mysterious other kernels in WinSxS

Components of an update

CAB

Benchmark results

44

EXPERIMENT 0.0

DISCOVERY #3

Error 2 in DISM leads to MSDelta

• A CAB failed, weird error(s)

• Trying to debug this while also investigating “patch deltas”

discovery

45

EXPERIMENT 0.0

DISCOVERY #3

Error 2 in DISM leads to MSDelta

• A CAB failed, weird error(s)

• Trying to debug this while also investigating “patch deltas”

discovery

What if I try to apply the kernel patch delta from this

failing CAB? Will it also fail?

46

EXPERIMENT 0.0

DISCOVERY #3

Patch delta didn’t fail, but entire CAB did!

I applied the kernel-specific patch delta, rather than the
whole CAB (which fails), using MSDelta (not DISM).

• 1. Reverse current kernel to a base state

• WinSxS (inside the WIM mount, not cab) contains a reverse diff for the kernel. We can
apply it to roll back our current kernel to a ”historical” base version. Then, we start
at this checkpoint to apply a new patch (next step).

• 2. Forward to a new state from patch of your
choice

• Now we turn to the cab (not WIM mount). We isolate the kernel delta, which
contains a forward diff. This forward diff must be applied to a known state, the
checkpoint from step 1. Then, the manifest hash is produced!

Error 2 in DISM leads to MSDelta

47

EXPERIMENT 0.0

DISCOVERY #3

Patch delta didn’t fail, but entire CAB did!

I applied the kernel-specific patch delta, rather than the
whole CAB (which fails), using MSDelta (not DISM).

• 1. Reverse current kernel to a base state

• WinSxS (inside the WIM mount, not cab) contains a reverse diff for the kernel. We can
apply it to roll back our current kernel to a ”historical” base version. Then, we start
at this checkpoint to apply a new patch (next step).

• 2. Forward to a new state from patch of your
choice

• Now we turn to the cab (not WIM mount). We isolate the kernel delta, which
contains a forward diff. This forward diff must be applied to a known state, the
checkpoint from step 1. Then, the manifest hash is produced!

Error 2 in DISM leads to MSDelta

48

EXPERIMENT 0.0

DISCOVERY #3

Patch delta didn’t fail, but entire CAB did!

I applied the kernel-specific patch delta, rather than the
whole CAB (which fails), using MSDelta (not DISM).

• 1. Reverse current kernel to a base state

• WinSxS (inside the WIM mount, not cab) contains a reverse diff for the kernel. We can
apply it to roll back our current kernel to a ”historical” base version. Then, we start
at this checkpoint to apply a new patch (next step).

• 2. Forward to a new state from patch of your
choice

• Now we turn to the cab (not WIM mount). We isolate the kernel delta, which
contains a forward diff. This forward diff must be applied to a known state, the
checkpoint from step 1. Then, the manifest hash is produced!

Base

version

Start

version

Error 2 in DISM leads to MSDelta

49

EXPERIMENT 0.0

DISCOVERY #3

Patch delta didn’t fail, but entire CAB did!

I applied the kernel-specific patch delta, rather than the
whole CAB (which fails), using MSDelta (not DISM).

• 1. Reverse current kernel to a base state

• WinSxS (inside the WIM mount, not cab) contains a reverse diff for the kernel. We can
apply it to roll back our current kernel to a ”historical” base version. Then, we start
at this checkpoint to apply a new patch (next step).

• 2. Forward to a new state from patch of your
choice

• Now we turn to the cab (not WIM mount). We isolate the kernel delta, which
contains a forward diff. This forward diff must be applied to a known state, the
checkpoint from step 1. Then, the manifest hash is produced!

Base

version

Start

version

Error 2 in DISM leads to MSDelta

r

50

EXPERIMENT 0.0

DISCOVERY #3

Patch delta didn’t fail, but entire CAB did!

I applied the kernel-specific patch delta, rather than the
whole CAB (which fails), using MSDelta (not DISM).

• 1. Reverse current kernel to a base state

• WinSxS (inside the WIM mount, not cab) contains a reverse diff for the kernel. We can
apply it to roll back our current kernel to a ”historical” base version. Then, we start
at this checkpoint to apply a new patch (next step).

• 2. Forward to a new state from patch of your
choice

• Now we turn to the cab (not WIM mount). We isolate the kernel delta, which
contains a forward diff. This forward diff must be applied to a known state, the
checkpoint from step 1. Then, the manifest hash is produced!

Base

version

Start

version

End

(new)

version

Error 2 in DISM leads to MSDelta

r

51

EXPERIMENT 0.0

DISCOVERY #3

Patch delta didn’t fail, but entire CAB did!

I applied the kernel-specific patch delta, rather than the
whole CAB (which fails), using MSDelta (not DISM).

• 1. Reverse current kernel to a base state

• WinSxS (inside the WIM mount, not cab) contains a reverse diff for the kernel. We can
apply it to roll back our current kernel to a ”historical” base version. Then, we start
at this checkpoint to apply a new patch (next step).

• 2. Forward to a new state from patch of your
choice

• Now we turn to the cab (not WIM mount). We isolate the kernel delta, which
contains a forward diff. This forward diff must be applied to a known state, the
checkpoint from step 1. Then, the manifest hash is produced!

Base

version

Start

version

End

(new)

version

Error 2 in DISM leads to MSDelta

r

f

52

EXPERIMENT 0.0

DISCOVERY #3

• Key takeaways

Base

version

Start

version

End

(new)

version

Error 2 in DISM leads to MSDelta

f

r

53

EXPERIMENT 0.0

DISCOVERY #3

• Key takeaways

• Kernel patch component succeeded (MSDelta) despite the

entire CAB failing (DISM)

• Error most likely for another file’s patch component, not

kernel

Base

version

Start

version

End

(new)

version

Error 2 in DISM leads to MSDelta

f

r

54

EXPERIMENT 0.0

DISCOVERY #3

• Key takeaways

• Kernel patch component succeeded (MSDelta) despite the

entire CAB failing (DISM)

• Error most likely for another file’s patch component, not

kernel

Base

version

Start

version

End

(new)

version

Error 2 in DISM leads to MSDelta

f

r

55

IS MSDELTA BETTER THAN DISM?

(Can we use it to more efficiently extract kernel PEs?)

56

IS MSDELTA BETTER THAN DISM?

• I made an experiment framework that runs trials with both DISM and MSDelta

• “Both are completely different tools. One is welding. The other is sewing. Your

experiments run them in parallel to see which is superior.”

• Paraphrasing Jason again

57

IS MSDELTA BETTER THAN DISM?

• I made an experiment framework that runs trials with both DISM and MSDelta

vs.

58

IS MSDELTA BETTER THAN DISM?

• I made an experiment framework that runs trials with both DISM and MSDelta

• “Both are completely different approaches. One is welding. The other is sewing. Your

experiments run them in parallel to see which is superior.”

• Paraphrasing Jason again

vs.

59

IS MSDELTA BETTER THAN DISM?

Research Objectives

60

IS MSDELTA BETTER THAN DISM?

• Figure out logic of a successful CAB

(problem in current Windows update

processing)

• CAB-WIM match the CAB’s?

• CAB Order: Can we successfully apply

CABs out of order? Can we produce a

new kernel with a mis-ordered sequence

of CABs?

Research Objectives

61

IS MSDELTA BETTER THAN DISM?

• Figure out logic of a successful CAB

(problem in current Windows update

processing)

• CAB-WIM Version Match: Can we

CAB Order: Can we successfully apply

CABs out of order? Can we produce a

new kernel with a mis-ordered sequence

of CABs?

• Determine whether to use MSDelta or

DISM

• MSDelta Reliability: Is there ever a

case where a CAB applies successfully in

DISM but a patch component in MSDelta

doesn't?

Research Objectives

62

IS MSDELTA BETTER THAN DISM?

• Figure out logic of a successful CAB

(problem in current Windows update

processing)

• CAB-WIM Success Logic: Can we

predict when a CAB will successfully

apply to a WIM?

• CAB Order: Can we successfully apply

CABs out of order? Can we produce a

new kernel with a mis-ordered sequence

of CABs?

• Determine whether to use MSDelta or

DISM

• MSDelta Reliability: Is there ever a

case where a CAB applies successfully in

DISM but a patch component in MSDelta

doesn't?

Research Objectives

63

IS MSDELTA BETTER THAN DISM?

• Figure out logic of a successful CAB

(problem in current Windows update

processing)

• CAB-WIM Success Logic: Can we

predict when a CAB will successfully

apply to a WIM?

• CAB Order: Can we successfully apply

CABs out of order? Can we produce a

new kernel with a mis-ordered sequence

of CABs?

• Determine whether to use MSDelta or

DISM

• MSDelta Reliability: Is there ever a

case where a CAB applies successfully in

DISM but a patch component in MSDelta

doesn't?

Research Objectives

64

IS MSDELTA BETTER THAN DISM?

• Figure out logic of a successful CAB

(problem in current Windows update

processing)

• CAB-WIM Success Logic: Can we

predict when a CAB will successfully

apply to a WIM?

• CAB Order: Can we successfully apply

CABs out of order? Can we produce a

new kernel with a mis-ordered sequence

of CABs?

• Determine whether to use MSDelta or

DISM

• MSDelta Reliability: Is there ever a

case where a CAB applies successfully in

DISM but a patch component in MSDelta

doesn't?

Research Objectives

65

IS MSDELTA BETTER THAN DISM?

• 6,071 trials

• 13 images (WIM versions)

• 231 CABs (inner-most)

• Trial types

• 3,003 CAB isolated trials (DISM)

• 3,003 Patch component trials (MSDelta)

• 65 CAB sequential trials (DISM)

• 5 per image (had to do other experiments with
smaller range of CABs)

Master Experiment Other Experiments

• CAB sequential experiments

• 860 trials

• 9 images

• 144 CABs (not all were applied to every WIM)

• All 1909 CABs

• 2 images

• 40 CABs “for” 1909

• Other baby experiments

66

PATCH DELTAS
Base

version

Start

version

End

(new)

version

“Paired Delta Approach”

r

f

67

PATCH DELTAS

• Why this approach? Linear rather than quadratic
growth in size of updates

• @Jason, plus more in appendix

Base

version

Start

version

End

(new)

version

“Paired Delta Approach”

r

f

68

ANATOMY OF A
PATCH COMPONENT

• When extracting patch components for a CAB, each

component has:

69

ANATOMY OF A
PATCH COMPONENT

• When extracting patch components for a CAB, each

component has:

• Patch deltas (executables applied to a target file, e.g.,

ntoskrnl.exe)

70

ANATOMY OF A
PATCH COMPONENT

• When extracting patch components for a CAB, each

component has:

• Patch deltas (executables applied to a target file, e.g.,

ntoskrnl.exe)

• A corresponding manifest file (which may be in a

different CAB than the exes)

71

ANATOMY OF A
PATCH COMPONENT

• When extracting patch components for a CAB, each

component has:

• Patch deltas (executables applied to a target file, e.g.,

ntoskrnl.exe)

• A corresponding manifest file (which may be in a

different CAB than the exes)

72

ANATOMY OF A
PATCH COMPONENT

• When extracting patch components for a CAB, each

component has:

• Patch deltas (executables applied to a target file, e.g.,

ntoskrnl.exe)

• A corresponding manifest file (which may be in a

different CAB than the exes)

manifest files!
• Contains expected result of the

patch in the form of hashes (and

kernel versions)

73

ANATOMY OF A
PATCH COMPONENT

• When extracting patch components for a CAB, each

component has:

• Patch deltas (executables applied to a target file, e.g.,

ntoskrnl.exe)

• A corresponding manifest file (which may be in a

different CAB than the exes)

manifest files!
• Contains expected result of the

patch in the form of hashes (and

kernel versions)

74

ANATOMY OF A
PATCH COMPONENT

• Forward diffs (f) – brings the base binary (.1) up to a particular

patch level

patch deltas!

credit: wumb0 article

Scenario #1: Paired Deltas

https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html

75

ANATOMY OF A
PATCH COMPONENT

• Forward diffs (f) – brings the base binary (.1) up to a particular

patch level

• Reverse diffs (r) – reverts the applied patch back to the base

binary (.1)

patch deltas!

credit: wumb0 article

Scenario #1: Paired Deltas

https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html

76

ANATOMY OF A
PATCH COMPONENT

• Forward diffs (f) – brings the base binary (.1) up to a particular

patch level

• Reverse diffs (r) – reverts the applied patch back to the base

binary (.1)

“You will always see r and f folders together inside of a patch because you need

to be able to revert the patch later on to apply a newer update.” –wumb0

patch deltas!

credit: wumb0 article

Scenario #1: Paired Deltas

https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html

77

ANATOMY OF A
PATCH COMPONENT

• Forward diffs (f) – brings the base binary (.1) up to a particular

patch level

• Reverse diffs (r) – reverts the applied patch back to the base

binary (.1)

“You will always see r and f folders together inside of a patch because you need

to be able to revert the patch later on to apply a newer update.” –wumb0

patch deltas!

credit: wumb0 article

Scenario #1: Paired Deltas

https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html

78

ANATOMY OF A
PATCH COMPONENT

• Forward diffs (f) – brings the base binary (.1) up to a particular

patch level

• Reverse diffs (r) – reverts the applied patch back to the base

binary (.1)

“You will always see r and f folders together inside of a patch because you need

to be able to revert the patch later on to apply a newer update.” –wumb0

patch deltas!

credit: wumb0 article

Not an executable! An MSDelta patch file

(PA30)

Scenario #1: Paired Deltas

https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html

79

ANATOMY OF A
PATCH COMPONENT

• Null diffs (n) – a completely new file, just compressed; apply to

an empty buffer to get the full file

• Root or n subdirectory

patch deltas!

credit: wumb0 article

Scenario #2: Null Diff

https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html

80

ANATOMY OF A
PATCH COMPONENT

• Null diffs (n) – a completely new file, just compressed; apply to

an empty buffer to get the full file

• Root or n subdirectory

patch deltas!

credit: wumb0 article

This is an executable

Scenario #2: Null Diff

https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html

81

ANATOMY OF A
KERNEL BUILD

NUMBER

A kernel build number:

10.0.17763.55

82

ANATOMY OF A
KERNEL BUILD

NUMBER

A kernel build number:

10.0.17763.55

Major.Minor.Build.Revision

83

ANATOMY OF A
KERNEL BUILD

NUMBER

A kernel build number:

10.0.17763.55

Major.Minor.Build.Revision

• According to Microsoft:

• Base version: A major software release with significant

changes, such as Windows 10, version 1809 (Windows 10

Build 17763.1)

• Revision: Minor releases in between the major version

releases, such as KB4464330 (Windows 10 Build 17763.55)

84

CAB-WIM SUCCESS LOGIC

Q: Can we predict when a CAB will successfully apply to a WIM?

Research Objective:

Figure out logic of successful CAB

85

CAB-WIM SUCCESS LOGIC

Q: Can we predict when a CAB will successfully apply to a WIM?

• A: Yes.

Research Objective:

Figure out logic of successful CAB

86

CAB-WIM SUCCESS LOGIC

Q: Can we predict when a CAB will successfully apply to a WIM?

• A: Yes.

• Success is based on both build AND revision number

Research Objective:

Figure out logic of successful CAB

87

CAB-WIM SUCCESS LOGIC

Q: Can we predict when a CAB will successfully apply to a WIM?

• A: Yes.

• Success is based on both build AND revision number

10.0.17763.55

Major.Minor.Build.Revision

Research Objective:

Figure out logic of successful CAB

88

CAB-WIM SUCCESS LOGIC

Q: Can we predict when a CAB will successfully apply to a WIM?

• A: Yes.

• Success is based on both build AND revision number

• Success = no errors + new kernel

• More nuanced in the full results (e.g., CABSs without kernel deltas)

10.0.17763.55

Major.Minor.Build.Revision

Research Objective:

Figure out logic of successful CAB

89

CAB-WIM SUCCESS LOGIC

• Successful Patches (CAB and Patch Component)

Research Objective:

Figure out logic of successful CAB

Major.Minor.Build.Revision

90

CAB-WIM SUCCESS LOGIC

• Successful Patches (CAB and Patch Component)

• All successful patches had:

Research Objective:

Figure out logic of successful CAB

Major.Minor.Build.Revision

91

CAB-WIM SUCCESS LOGIC

• Successful Patches (CAB and Patch Component)

• All successful patches had:

• build numbers equal to the build number of a given WIM, and

Research Objective:

Figure out logic of successful CAB

Major.Minor.Build.Revision

10.0.17763.55

10.0.17763.60

92

CAB-WIM SUCCESS LOGIC

• Successful Patches (CAB and Patch Component)

• All successful patches had:

• build numbers equal to the build number of a given WIM, and

• a revision number greater than that of the WIM

Research Objective:

Figure out logic of successful CAB

Major.Minor.Build.Revision

10.0.17763.55

10.0.17763.60

93

CAB-WIM SUCCESS LOGIC

• Successful Patches (CAB and Patch Component)

• All successful patches had:

• build numbers equal to the build number of a given WIM, and

• a revision number greater than that of the WIM

Golden Rule for a Successful Patch

A patch component for 10.0.x.y will only

successfully apply to 10.0.a.b if x==a and y>b.

Note: the edge/trivial case of x==a AND y==b (patch is the

same as the image) was not tested in this project.

Research Objective:

Figure out logic of successful CAB

Major.Minor.Build.Revision

10.0.17763.55

10.0.17763.60

94

CAB ORDER

Q: Can we successfully apply CABs out of order?

Q: Can we produce a new kernel with a mis-ordered sequence of CABs?

Research Objective:

Figure out logic of successful CAB

95

CAB ORDER

Q: Can we successfully apply CABs out of order?

Q: Can we produce a new kernel with a mis-ordered sequence of CABs?

• A: Sometimes.

Research Objective:

Figure out logic of successful CAB

96

CAB ORDER

Q: Can we successfully apply CABs out of order?

Q: Can we produce a new kernel with a mis-ordered sequence of CABs?

• A: Sometimes.

Research Objective:

Figure out logic of successful CAB

Not super important.

MSDelta is now hot

shot.

97

CAB ORDER

Q: Can we successfully apply CABs out of order?

Q: Can we produce a new kernel with a mis-ordered sequence of CABs?

• A: Sometimes.

• Depends on whether there are CABs in the sequence with the potential to

successfully apply (build number matches WIM)

Research Objective:

Figure out logic of successful CAB

Not super important.

MSDelta is now hot

shot.

98

CAB ORDER

Q: Can we successfully apply CABs out of order?

Q: Can we produce a new kernel with a mis-ordered sequence of CABs?

• A: Sometimes.

• Depends on whether there are CABs in the sequence with the potential to

successfully apply (build number matches WIM)

• If so, the final kernel takes the CAB with the most recent kernel version, even if that

CAB wasn’t the last CAB applied.

Research Objective:

Figure out logic of successful CAB

Not super important.

MSDelta is now hot

shot.

99

CAB ORDER

Q: Can we successfully apply CABs out of order?

Q: Can we produce a new kernel with a mis-ordered sequence of CABs?

• A: Sometimes.

• Depends on whether there are CABs in the sequence with the potential to

successfully apply (build number matches WIM)

• If so, the final kernel takes the CAB with the most recent kernel version, even if that

CAB wasn’t the last CAB applied.

• The ability of a CAB sequence to produce a new kernel depends on whether a failed

CAB in the sequence (if there is one) corrupts the mount image, thereby ruining

subsequent CABs from successfully applying.

Research Objective:

Figure out logic of successful CAB

Not super important.

MSDelta is now hot

shot.

100

MSDELTA RELIABILITY

Q: Is there ever a case where a CAB applies successfully in DISM but a patch

component in MSDelta doesn’t?

Research Objective:

Determine whether to use MSDelta or DISM

101

MSDELTA RELIABILITY

Q: Is there ever a case where a CAB applies successfully in DISM but a patch

component in MSDelta doesn’t?

• A: No.

Research Objective:

Determine whether to use MSDelta or DISM

102

MSDELTA RELIABILITY

Q: Is there ever a case where a CAB applies successfully in DISM but a patch

component in MSDelta doesn’t?

• A: No.

• For all observed trials, when MSDelta fails, the corresponding DISM trial also fails.

There are no observed cases of an MSDelta trial failing and the corresponding DISM

trial succeeding.

Research Objective:

Determine whether to use MSDelta or DISM

103

MSDELTA RELIABILITY

Q: Is there ever a case where a CAB applies successfully in DISM but a patch

component in MSDelta doesn’t?

• A: No.

• For all observed trials, when MSDelta fails, the corresponding DISM trial also fails.

There are no observed cases of an MSDelta trial failing and the corresponding DISM

trial succeeding.

• In addition, DISM trials are less reliable than MSDelta trials, since it is still possible for

a DISM trial to fail despite a matching build number.

Research Objective:

Determine whether to use MSDelta or DISM

104

MSDELTA RELIABILITY

Q: Is there ever a case where a CAB applies successfully in DISM but a patch

component in MSDelta doesn’t?

• A: No.

• For all observed trials, when MSDelta fails, the corresponding DISM trial also fails.

There are no observed cases of an MSDelta trial failing and the corresponding DISM

trial succeeding.

• In addition, DISM trials are less reliable than MSDelta trials, since it is still possible for

a DISM trial to fail despite a matching build number.

• We do not see this in MSDelta trials due to the reverse diffing process of

applying patch components.

Research Objective:

Determine whether to use MSDelta or DISM

105

MSDELTA RELIABILITY

Q: Is there ever a case where a CAB applies successfully in DISM but a patch

component in MSDelta doesn’t?

• A: No.

• For all observed trials, when MSDelta fails, the corresponding DISM trial also fails.

There are no observed cases of an MSDelta trial failing and the corresponding DISM

trial succeeding.

• In addition, DISM trials are less reliable than MSDelta trials, since it is still possible for

a DISM trial to fail despite a matching build number.

• We do not see this in MSDelta trials due to the reverse diffing process of

applying patch components.

• Therefore, we can predict whether MSDelta will successfully apply a patch component just

based on build numbers

Research Objective:

Determine whether to use MSDelta or DISM

106

CONCLUSIONS

107

CONCLUSIONS

MSDelta beats DISM

108

CONCLUSIONS

MSDelta beats DISM

Golden Rule for successful patch

109

MSDELTA BEATS DISM

110

MSDELTA BEATS DISM

• More precise

• Just the kernel patch, not entire CAB

• Much faster

• No mounting/unmounting for every trial – only need base version

• 30 mins in MSDelta vs. 2.5 hours in DISM

• More reliable

• Succeeds in some cases where DISM fails (never vice versa)

• Theory: isolates kernel patch from corruption in other components’ patches

• Likely to be able to run on other platforms

• DLL – doesn’t require Windows system services (distributed with Wine)

• Whereas DISM depends on other Windows system services

• Bonus: sheds light on how DISM’s “Add-Package” command works

• Used to apply a full CAB

111

MSDELTA BEATS DISM

• More precise

• Just the kernel patch, not entire CAB

• Much faster

• No mounting/unmounting for every trial – only need base version

• 30 mins in MSDelta vs. 2.5 hours in DISM

• More reliable

• Succeeds in some cases where DISM fails (never vice versa)

• Theory: isolates kernel patch from corruption in other components’ patches

• Likely to be able to run on other platforms

• DLL – doesn’t require Windows system services (distributed with Wine)

• Whereas DISM depends on other Windows system services

• Bonus: sheds light on how DISM’s “Add-Package” command works

• Used to apply a full CAB

112

MSDELTA BEATS DISM

• More precise

• Just the kernel patch, not entire CAB

• Much faster

• No mounting/unmounting for every trial – only need base version

• 30 mins in MSDelta vs. 2.5 hours in DISM

• More reliable

• Succeeds in some cases where DISM fails (never vice versa)

• Theory: isolates kernel patch from corruption in other components’ patches

• Likely to be able to run on other platforms

• DLL – doesn’t require Windows system services (distributed with Wine)

• Whereas DISM depends on other Windows system services

• Bonus: sheds light on how DISM’s “Add-Package” command works

• Used to apply a full CAB

113

MSDELTA BEATS DISM

• More precise

• Just the kernel patch, not entire CAB

• Much faster

• No mounting/unmounting for every trial – only need base version

• 30 mins in MSDelta vs. 2.5 hours in DISM

• More reliable

• Succeeds in some cases where DISM fails (never vice versa)

• Theory: isolates kernel patch from corruption in other components’ patches

• Likely to be able to run on other platforms

• DLL – doesn’t require Windows system services (distributed with Wine)

• Whereas DISM depends on other Windows system services

• Bonus: sheds light on how DISM’s “Add-Package” command works

• Used to apply a full CAB

114

MSDELTA BEATS DISM

• More precise

• Just the kernel patch, not entire CAB

• Much faster

• No mounting/unmounting for every trial – only need base version

• 30 mins in MSDelta vs. 2.5 hours in DISM

• More reliable

• Succeeds in some cases where DISM fails (never vice versa)

• Theory: isolates kernel patch from corruption in other components’ patches

• Likely to be able to run on other platforms

• DLL – doesn’t require Windows system services (distributed with Wine)

• Whereas DISM depends on other Windows system services

• Bonus: sheds light on how DISM’s “Add-Package” command works

• Used to apply a full CAB

115

MSDELTA BEATS DISM

• More precise

• Just the kernel patch, not entire CAB

• Much faster

• No mounting/unmounting for every trial – only need base version

• 30 mins in MSDelta vs. 2.5 hours in DISM

• More reliable

• Succeeds in some cases where DISM fails (never vice versa)

• Theory: isolates kernel patch from corruption in other components’ patches

• Likely to be able to run on other platforms

• DLL – doesn’t require Windows system services (distributed with Wine)

• Whereas DISM depends on other Windows system services

• Bonus: sheds light on how DISM’s “Add-Package” command works

• Used to apply a full CAB

“There’s work to do.”

• Right now, just a proof of

concept

116

GOLDEN RULE

117

GOLDEN RULE

A patch component for 10.0.x.y will only

successfully apply to 10.0.a.b if x==a and

y>b.

118

GOLDEN RULE

A patch component for 10.0.x.y will only

successfully apply to 10.0.a.b if x==a and

y>b.

TLDR

• Build numbers must match

• Revision number of patch must be greater than that of WIM/base version

119

GOLDEN RULE

A patch component for 10.0.x.y will only

successfully apply to 10.0.a.b if x==a and

y>b.

• We figured out something about the logic of a CAB!

• Help predict whether kernel patch component will successfully apply.

TLDR

• Build numbers must match

• Revision number of patch must be greater than that of WIM/base version

120

THANKS FOR AN AWESOME
INTERNSHIP

121

QUESTIONS

122

APPENDIX

123

PAIRED DELTAS DEEP DIVE

124

WORKS REFERENCED

• Extracting and Diffing Windows Patches in 2020 - wumb0in'

• Windows Updates using forward and reverse differentials - Windows

Deployment | Microsoft Docs

• How Microsoft reduced Windows 11 update size by 40% - Microsoft Tech

Community

https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html
https://docs.microsoft.com/en-us/windows/deployment/update/psfxwhitepaper
https://techcommunity.microsoft.com/t5/windows-it-pro-blog/how-microsoft-reduced-windows-11-update-size-by-40/ba-p/2839794

