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HOW DO WE CURRENTLY EXTRACT 
KERNEL EXECUTABLES FROM CABS? 

WIM
CAB

ntoskrnl.exe

Windows\System32\ntoskrnl.exe

• Unfortunately, we can’t just directly extract a full kernel exe from a CAB file

• We could apply the CAB to a Windows machine to produce the new kernel 

executable

• Instead of an entire Windows machine, we use a WIM (Windows image)

• WIM = “baby Windows file system” (to quote Jason)
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CAN WE IMPROVE OUR DISM PROCESS?

• Can we make it leaner, more efficient?

• Run experiments to find out

• Humble beginnings

• Learning DISM

• Automating DISM in Python

• Eventually, kicked off Experiment 0.0

• All while experiencing DISM’s weak spots 
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CAN WE IMPROVE OUR DISM PROCESS?

• PROBLEM: a CAB doesn’t always 

successfully apply to a WIM - we don’t 

know why/when

• Missing the logic for how to determine a 

successful CAB

• We use number of heuristics to 

approximate in current process

• PROBLEM: DISM is dismally slow

• Requires mounting and unmounting a WIM

• /Add-Package can take a while

• Applies the entire CAB file, which has a 

bunch of other things besides the kernel 

update
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EXPERIMENT 0.0
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Mysterious other kernels in WinSxS

Components of an update 

CAB

Benchmark results
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EXPERIMENT 0.0

DISCOVERY #3

Error 2 in DISM leads to MSDelta

• A CAB failed, weird error(s)

• Trying to debug this while also investigating “patch deltas” 

discovery

What if I try to apply the kernel patch delta from this 

failing CAB?  Will it also fail?
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IS MSDELTA BETTER THAN DISM?

• 6,071 trials

• 13 images (WIM versions)

• 231 CABs (inner-most)

• Trial types

• 3,003 CAB isolated trials (DISM)

• 3,003 Patch component trials (MSDelta)

• 65 CAB sequential trials (DISM)

• 5 per image (had to do other experiments with 
smaller range of CABs)

Master Experiment Other Experiments

• CAB sequential experiments

• 860 trials

• 9 images

• 144 CABs (not all were applied to every WIM)

• All 1909 CABs

• 2 images

• 40 CABs “for” 1909

• Other baby experiments
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PATCH DELTAS
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PATCH DELTAS

• Why this approach? Linear rather than quadratic 
growth in size of updates 

• @Jason, plus more in appendix
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version
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version
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(new) 

version

“Paired Delta Approach”

r

f
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https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html
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ANATOMY OF A 
PATCH COMPONENT

• Forward diffs (f) – brings the base binary (.1) up to a particular 

patch level

• Reverse diffs (r) – reverts the applied patch back to the base 

binary (.1)

“You will always see r and f folders together inside of a patch because you need 

to be able to revert the patch later on to apply a newer update.”  –wumb0

patch deltas!

credit: wumb0 article

Not an executable! An MSDelta patch file 

(PA30)

Scenario #1: Paired Deltas

https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html
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ANATOMY OF A 
PATCH COMPONENT

• Null diffs (n) – a completely new file, just compressed; apply to 

an empty buffer to get the full file

• Root or n subdirectory

patch deltas!

credit: wumb0 article

Scenario #2: Null Diff
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ANATOMY OF A 
PATCH COMPONENT

• Null diffs (n) – a completely new file, just compressed; apply to 

an empty buffer to get the full file

• Root or n subdirectory

patch deltas!

credit: wumb0 article

This is an executable

Scenario #2: Null Diff

https://wumb0.in/extracting-and-diffing-ms-patches-in-2020.html
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ANATOMY OF A 
KERNEL BUILD 

NUMBER

A kernel build number:

10.0.17763.55 

Major.Minor.Build.Revision

• According to Microsoft:

• Base version:  A major software release with significant 

changes, such as Windows 10, version 1809 (Windows 10 

Build 17763.1)

• Revision:  Minor releases in between the major version 

releases, such as KB4464330 (Windows 10 Build 17763.55)
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CAB-WIM SUCCESS LOGIC

Q: Can we predict when a CAB will successfully apply to a WIM?

• A: Yes. 

• Success is based on both build AND revision number

• Success = no errors + new kernel

• More nuanced in the full results (e.g., CABSs without kernel deltas)

10.0.17763.55

Major.Minor.Build.Revision

Research Objective: 

Figure out logic of successful CAB
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CAB-WIM SUCCESS LOGIC

• Successful Patches (CAB and Patch Component)

• All successful patches had:

• build numbers equal to the build number of a given WIM, and

• a revision number greater than that of the WIM

Research Objective: 

Figure out logic of successful CAB

Major.Minor.Build.Revision
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CAB-WIM SUCCESS LOGIC

• Successful Patches (CAB and Patch Component)

• All successful patches had:

• build numbers equal to the build number of a given WIM, and

• a revision number greater than that of the WIM

Golden Rule for a Successful Patch

A patch component for 10.0.x.y will only 

successfully apply to 10.0.a.b if x==a and y>b.

Note: the edge/trivial case of x==a AND y==b (patch is the 

same as the image) was not tested in this project.

Research Objective: 

Figure out logic of successful CAB

Major.Minor.Build.Revision

10.0.17763.55

10.0.17763.60
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CAB ORDER

Q: Can we successfully apply CABs out of order? 

Q: Can we produce a new kernel with a mis-ordered sequence of CABs? 

• A: Sometimes.

• Depends on whether there are CABs in the sequence with the potential to 

successfully apply (build number matches WIM)

• If so, the final kernel takes the CAB with the most recent kernel version, even if that 

CAB wasn’t the last CAB applied.

• The ability of a CAB sequence to produce a new kernel depends on whether a failed 

CAB in the sequence (if there is one) corrupts the mount image, thereby ruining 

subsequent CABs from successfully applying. 

Research Objective: 

Figure out logic of successful CAB

Not super important. 

MSDelta is now hot 

shot.
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MSDELTA RELIABILITY

Q: Is there ever a case where a CAB applies successfully in DISM but a patch 

component in MSDelta doesn’t? 

• A: No.

• For all observed trials, when MSDelta fails, the corresponding DISM trial also fails. 

There are no observed cases of an MSDelta trial failing and the corresponding DISM 

trial succeeding.

• In addition, DISM trials are less reliable than MSDelta trials, since it is still possible for 

a DISM trial to fail despite a matching build number. 

• We do not see this in MSDelta trials due to the reverse diffing process of 

applying patch components.

• Therefore, we can predict whether MSDelta will successfully apply a patch component just 

based on build numbers

Research Objective: 

Determine whether to use MSDelta or DISM
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MSDelta beats DISM

Golden Rule for successful patch
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• More precise 

• Just the kernel patch, not entire CAB

• Much faster

• No mounting/unmounting for every trial – only need base version

• 30 mins in MSDelta vs. 2.5 hours in DISM

• More reliable 

• Succeeds in some cases where DISM fails (never vice versa)

• Theory: isolates kernel patch from corruption in other components’ patches

• Likely to be able to run on other platforms

• DLL – doesn’t require Windows system services (distributed with Wine)

• Whereas DISM depends on other Windows system services

• Bonus: sheds light on how DISM’s “Add-Package” command works

• Used to apply a full CAB
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MSDELTA BEATS DISM

• More precise 

• Just the kernel patch, not entire CAB

• Much faster

• No mounting/unmounting for every trial – only need base version

• 30 mins in MSDelta vs. 2.5 hours in DISM

• More reliable 

• Succeeds in some cases where DISM fails (never vice versa)

• Theory: isolates kernel patch from corruption in other components’ patches

• Likely to be able to run on other platforms

• DLL – doesn’t require Windows system services (distributed with Wine)

• Whereas DISM depends on other Windows system services

• Bonus: sheds light on how DISM’s “Add-Package” command works

• Used to apply a full CAB

“There’s work to do.”

• Right now, just a proof of 

concept
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GOLDEN RULE

A patch component for 10.0.x.y will only 

successfully apply to 10.0.a.b if x==a and 

y>b.

• We figured out something about the logic of a CAB!

• Help predict whether kernel patch component will successfully apply. 

TLDR

• Build numbers must match

• Revision number of patch must be greater than that of WIM/base version
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APPENDIX
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PAIRED DELTAS DEEP DIVE
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